Labeling nanoparticles: Dye leakage and altered cellular uptake
نویسندگان
چکیده
منابع مشابه
Cyclic Strain Enhances Cellular Uptake of Nanoparticles
Nanoparticles (NPs) have gained increasing interest in recent years due to their potential use as drug carrier, imaging, and diagnostic agents in pharmaceutical and biomedical applications. While many cells in vivo experience mechanical forces, little is known about the correlation of the mechanical stimulation and the internalization of NPs into cells. This paper investigates the effects of ap...
متن کاملCarbohydrate functionalization of silver nanoparticles modulates cytotoxicity and cellular uptake
BACKGROUND Increasing use of silver nanoparticles (Ag-NPs) in various products is resulting in a greater likelihood of human exposure to these materials. Nevertheless, little is still known about the influence of carbohydrates on the toxicity and cellular uptake of nanoparticles. METHODS Ag-NPs functionalized with three different monosaccharides and ethylene glycol were synthesized and charac...
متن کاملNew views on cellular uptake and trafficking of manufactured nanoparticles.
Nanoparticles (NPs) are of similar size to typical cellular components and proteins, and can efficiently intrude living cells. A detailed understanding of the involved processes at the molecular level is important for developing NPs designed for selective uptake by specific cells, for example, for targeted drug delivery. In addition, this knowledge can greatly assist in the engineering of NPs t...
متن کاملCellular uptake and intracellular degradation of poly(alkyl cyanoacrylate) nanoparticles
BACKGROUND Poly(alkyl cyanoacrylate) (PACA) nanoparticles have shown promise as drug carriers both to solid tumors and across the blood-brain barrier. Efficient drug delivery requires both high cellular uptake of the nanoparticles and release of the drug from the nanoparticles. Release of hydrophobic drugs from PACA nanoparticles is primarily governed by nanoparticle degradation, and this proce...
متن کاملSilver nanoparticles: correlating nanoparticle size and cellular uptake with genotoxicity.
The focus of this research was to develop a better understanding of the pertinent physico-chemical properties of silver nanoparticles (AgNPs) that affect genotoxicity, specifically how cellular uptake influences a genotoxic cell response. The genotoxicity of AgNPs was assessed for three potential mechanisms: mutagenicity, clastogenicity and DNA strand-break-based DNA damage. Mutagenicity (rever...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Cytometry Part A
سال: 2016
ISSN: 1552-4922
DOI: 10.1002/cyto.a.22853